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Abstract 

Due to the fast growing market in Android smartphone operating systems to date cyber criminals 

have naturally extended their target towards Google‘s Android mobile operating system. Threat 

researchers are reporting an alarming increase of detected malware for Android from 2012 to 

2013. Static analysis techniques for malware detection are based on signatures of known 

malicious applications. It cannot detect new malware applications and the attacker will get 

window of opportunities until the threat databases are updated for the new malware. Malware 

detection techniques based on dynamic analysis are mostly designed as a cloud based services 

where the user must submit the application to know whether the application is malware or not.   

As a solution to these problems, in this work we design and implement a host based lightweight 

security auditing tool that suits resource-constrained mobile devices in terms of low storage and 

computational requirements. Our proposed solution utilizes the open nature of the Android 

operating system and uses the public APIs provided by the Android SDK to collect features of 

known-benign and known-malicious applications. The collected features are then provided to 

machine learning algorithm to develop a baseline classification model. This classification model 

is then used to classify new or unknown applications either as malware or goodware and if it is 

malware it alerts the user about the infection. 

Our proposed solution has been tested by analyzing both malicious and benign applications 

collected from different websites. The technique used is shown to be an effective means of 

detecting malware and alerting users about detection of malware, which suggests that it has the 

capability to stop the spread of the attack since once the user is aware of the malicious 

application he can take measures by uninstalling the application. Experimental results show that 

the proposed solution has detection rate of 96.73% in RandomForest machine learning model which is 

used during the final development of our proposed solution as an Android application and low rate of 

false positive rate(0.01). Performance impact on the Android system can also be ignored which is 

only 3.7-5.6% CPU overhead, 3-4% of RAM overhead and the battery exhaustion is only 2%. 

Keywords: Smartphones, Android, Malware detection, Machine Learning, Classification  
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Chapter 1 

1.1 Introduction  

Personal Digital Assistants (PDAs), mobile phones and recently smartphones have evolved from 

simple mobile phones into sophisticated yet compact minicomputers which can connect to a 

wide spectrum of networks, including the Internet and corporate intranets. Designed as open, 

programmable, networked devices, smartphones are susceptible to various malware threats such 

as viruses, Trojan horses, and worms, all of which are well-known from desktop platforms. 

These devices enable users to access and browse the Internet, receive and send emails, SMSs, 

and MMSs, connect to other devices for exchanging information/synchronizing, and activate 

various applications, which make these devices attack targets [1]. 

A compromised smartphone can inflict severe damages to both users and the cellular service 

provider. Malware on a smartphone can make the phone partially or fully unusable; cause 

unwanted billing; steal private information (possibly by Phishing and Social Engineering); or 

infect the contacts in the phone-book. Possible attack vectors into smartphones include: Cellular 

networks, Internet connections (via Wi-Fi, GPRS/EDGE or 3G network access); 

USB/ActiveSync/Docking and other peripherals [1]. 

The challenges for smartphone security are becoming very similar to those that personal 

computers encounter and common desktop-security solutions are often being downsized to 

mobile devices. However, some of the desktop solutions (i.e., antivirus software) are inadequate 

for use on smartphones as they consume too much CPU and memory and might result in rapid 

draining of the power source. In addition, most antivirus detection capabilities depend on the 

existence of an updated malware signature repository, therefore the antivirus users are not 

protected whenever an attacker spreads previously unencountered malware. Since the response 

time of antivirus vendors may vary between several hours to several days to identify the new 

malware, generate a signature, and update their clients‘ signature database, hackers have a 

substantial window of opportunity. Some malware instances may target a specific and relatively 

small number of mobile devices (e.g., to extract confidential information or track owner‘s 

location) and will therefore take quite a time till they are discovered [1]. 
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Mobile operating systems pre-installed on all currently sold smartphones need to meet different 

criteria than desktop and server operating systems, both in functionality and security. Mobile 

platforms often contain strongly interconnected, small and less-well controlled applications from 

various single developers, whereas desktop and server platforms obtain largely independent 

software from trusted sources. Also, users typically have full access to administrative functions 

on non-mobile platforms. Mobile platforms, however, restrict administrative control through 

users where the root user has full access to administrative functions. [8] 

With an estimated market share of 70% to 80%, Android has become the most popular operating 

system for smartphones and tablets [2, 3]. Expecting a shipment of 1 billion Android devices in 

2017 and with over 50 billion total app downloads since the first Android phone was released in 

2008, cyber criminals naturally expanded their vicious activities towards Google‘s mobile 

platform. Mobile threat researchers indeed recognize an alarming increase of Android malware 

from 2012 to 2013 and estimate that the number of detected malicious apps is now in the range 

of 120,000 to 718,000 [4, 5, 6, 7]. In the summer of 2012, the sophisticated Eurograbber attack 

showed that mobile malware may be a very lucrative business by stealing an estimated 

€36,000,000 from bank customers in Italy, Germany, Spain and the Netherlands [9]. 

Android‘s open design allows users to install applications that do not necessarily originate from 

the Google Play Store. With over 1 million apps available for download via Google‘s official 

channel [10], and possibly another million spread among third-party app stores, we can estimate 

that there are over 20,000 new applications being released every month. This requires malware 

researchers and app store administrators to have access to a scalable solution for quickly 

analyzing new apps and identifying and isolating malicious applications. 

Google reacted to the growing interest of miscreants in Android by revealing Bouncer in 

February 2012, a service that checks apps submitted to the Google Play Store for malware [11]. 

However, research has shown that Bouncer‘s detection rate is still fairly low and that it can 

easily be bypassed [12, 13]. A large body of similar research on Android malware has been 

proposed, but none of them provide a complete solution to obtain a thorough understanding of 

unknown applications: work done by [14, 15] limited by system call analysis only, [16] focuses 

on taint tracking i.e tracking the flow of sensitive data which leaves the smartphone, [17, 18] 
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track only specific API invocations, and work done by [19] is bound to use an emulator as 

sandboxing during analysis of malicious applications. 

1.2 Statement of the problem 

Even though a lot of work is done on the security mechanism of Android platform there are still 

vulnerabilities which allow malicious attacks to control access to sensitive information using 

different techniques. The Google play which is an application market is the best place to infect 

Android applications with malicious code. Once the malicious application is on the Google play 

market users download and install the application then the malicious application sends users 

sensitive and personal data to the attacker without the notice of the owner.  

 
Android has a complex security architecture based on capabilities that can be obtained through a 

range of permissions that apps may request and users can grant those apps when being installed. 

Unfortunately, the current documentation of this security architecture is not very well described, 

and the existing documentation is sometimes incomplete and contradictory, leading to possible 

vulnerabilities that malicious apps could exploit. 

 
Android is vulnerable to malicious attacks due to the ability of users to load different software off 

market which opens the door for malicious applications. The other main factor which increases 

the risk for Android users is problem of software updates and lack of patches. 

 

Most antimalware applications in the market today use static analysis for detection of malicious 

applications because it is fast and simple. However, static analysis is based on signatures of 

known malicious applications it cannot detect new malware applications and the attacker will 

get window of opportunities until the threat databases updated for the new malware. 

 
As described above Android users are still attacked by malicious software therefore it needs an 

efficient and enhanced technique to detect those malicious attacks and alert the user to stop 

them. In this thesis a lightweight auditing tool is implemented to detect those malicious attacks 

and it will be tested for different real world malicious attacks. Auditing tool keeps an eye on the 

installed applications for performing suspected activity and alerts Android users for such 

threats. 
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1.3 Objectives  

The objective of this Master's thesis is to design and implement a lightweight security auditing 

tool for the Android platform. The specific objectives will be divided in to: 

  Monitoring the behavior of the system and applications installed on the Android 

emulator/device and analyze the collected data to detect malicious activities. 

  Evaluating our security auditing tool using training and testing set applications, which 

consists of malware and normal applications, using machine learning classifiers. 

1.4 Methodology 

In order to achieve the objectives of this thesis we have followed the following distinct phases 

during the thesis stay: 

i. Study of the security requirements and threats in smartphones and the existing 

malware detection techniques for such systems. This is achieved by reading literature 

review and contacting professionals online. 

ii. The collection of datasets to support our experimental analysis. That is, the collection 

of both malicious and benign applications from different websites.  

iii. Extraction of the features used to learn the machine learning algorithms. These 

features are extracted by running the applications collected in phase two on Android 

emulator, a virtual Android mobile device able to run on the computer. The extracted 

features are used to evaluate the effectiveness and accuracy of our proposed 

framework. 

iv. The design and implementation of the proposed framework, a lightweight behavior-

based malware detection technique for Android platform. This is mainly concerned 

with coding the new, lightweight, which has low computational overhead and low 

memory consumption, and advanced Android malware detection methods used in this 

thesis work. The framework is implemented as an Android application, by using 

Eclipse integrated with Android SDK tool. 

v. Evaluating and analyzing the framework designed and implemented in phase four 

using the dataset(s) collected in phase three. 
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1.5 Thesis outline 

The remainder of this Thesis is organized into the following five chapters: In Chapter 2, we 

provide background information of the Android architecture. It presents general information on 

malicious applications, threats and the security model used on the Android platform. Chapter 3 

of the report presents a brief review of literature. This chapter reviews different works which are 

related with our thesis. Chapter 4 discusses the design and implementation of the proposed 

solution. It points out the different techniques used in our thesis to monitor the behavior of the 

system and the implementation of the framework on the Android Emulator. Chapter 5 analyzes 

the experimental results performed on the proposed framework using the whole feature sets 

monitored from the system and performance evaluation is done using different machine learning 

algorithms. Finally, conclusions and recommendations for future work are presented in chapter 

6. 
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Chapter 2 

Background Information 

Before we discuss the details of our analysis framework, it is important to understand how 

Android and Android applications work. In this chapter, we provide a short introduction into the 

Android architecture. 

2.1 Android System Architecture 

The Android software stack is shown in Figure 2.1. In this figure, green items are components 

written in native code (C/C++), while blue items are Java components interpreted and executed 

by the Dalvik Virtual Machine. The bottom red layer represents the Linux kernel components 

and runs in kernel space. In the following subsections, we briefly compiled the various layers 

from the existing studies [20, 21, and 22].  

2.1.1 Linux kernel 

Android uses a specialized version of the Linux Kernel with a few special additions. These 

include wakelocks (mechanisms to indicate that apps need to have the device stay on), a memory 

management system that is more aggressive in preserving memory, the Binder IPC driver, logger 

and other features that are important for a mobile embedded platform like Android. The users of 

the device do not have the privilege to acess the Linux subsystem and some sensitive information 

which is found under the /system partition which is a read-only partition unless the device is 

rooted. However, root access can be obtained by exploiting security flaws in Android, which is 

used frequently by the open-source community to enhance the capabilities of their devices but 

also by malicious parties to install viruses and malware. Like the rest of the Android, the Linux 

kernel is also open-source software so that it is freely available for development. 

 

http://en.wikipedia.org/wiki/Android_(operating_system)#Open_source_community
http://en.wikipedia.org/wiki/Computer_virus
http://en.wikipedia.org/wiki/Malware
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Figure 2-1  Android low level system architecture 

2.1.2 Libraries 

 
A set of native C/C++ libraries is exposed to the Application Framework and Android Runtime 

via the Libraries component. These are mostly external libraries with only very minor 

modifications such as OpenSSL, WebKit and bzip2. The essential C libraries, codename Bionic, 

were ported from BSD‘s libc and were rewritten to support ARM hardware and Android‘s own 

implementation of threads based on Linux futexes. 

2.1.3 Android runtime 

 
The middleware component called Android Runtime consists of the Dalvik Virtual Machine 

(Dalvik VM or DVM) and a set of Core Libraries. The Dalvik VM is responsible for the 

execution of applications that are written in the Java programming language and is discussed in 

more detail in Section 2.2. The core libraries are an implementation of general purpose APIs and 
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can be used by the applications executed by the Dalvik VM. Android distinguishes two 

categories of core libraries. 

 Dalvik VM-specific libraries. 

 Java programming language interoperability libraries. 

The first set allows in processing or modifying VM-specific information and is mainly used 

when bytecode needs to be loaded into memory. The second category provides the familiar 

environment for Java programmers and comes from Apache‘s Harmony. It implements most of 

the popular Java packages such as java.lang and java.util. 

2.1.4 Application framework 

The Application Framework provides high level building blocks to applications in the form of 

various android packages. Most components in this layer are implemented as applications and 

run as background processes on the device. Some components are responsible for managing 

basic phone functions like receiving phone calls or text messages or monitoring power usage. A 

couple of components deserve a bit more attention: 

Activity Manager: The Activity Manager (AM) is a process-like manager that keeps track of 

active applications. It is responsible for killing background processes if the device is running out 

of memory. It also has the capability to detect unresponsive applications when an app does not 

respond to an input event within 5 seconds (such as a key press or screen touch). It then prompts 

an Application Not Responding (ANR) dialog shown in Figure 2.2. 

 

Figure 2-2 ANR dialog [22] 
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Content Providers: Content Providers are one of the primary building blocks for Android 

applications. They are used to share data between multiple applications. Contact list data, for 

example, can be accessed by multiple applications and must thus be stored in a content provider. 

Telephony Manager: The Telephony Manager provides access to information about the 

telephony services on the device such as the phone‘s unique device identifier (IMEI) or the 

current cell location. It is also responsible for managing phone calls. 

Location Manager: The Location Manager provides access to the system location services 

which allow applications to obtain periodic updates of the device‘s geographical location by 

using the device‘s GPS sensor. 

2.1.5 Applications 

Applications or apps are built on top of the Application Framework and are responsible for the 

interaction between end-users and the device. It is unlikely that an average user ever has to deal 

with components not in this layer. Pre-installed applications offer a number of basic tasks a user 

would like to perform (making phone calls, browsing the web, reading e-mail, etc.), but users are 

free to install third-party applications to use other features (e.g., play games, watch videos, read 

news, use GPS navigation, etc.).  

2.2 Dalvik Virtual Machine 

Android‘s design encourages software developers to write applications that offer users extra 

functionality. Google decided to use Java as the platform‘s main programming language as it is 

one of the most popular languages: Java has been the number one programming language almost 

continuously over the last decade, and a large number of development tools are available for it 

(e.g., Eclipse and NetBeans). Java source code is normally compiled to and distributed as Java 

bytecode which, at runtime, is interpreted and executed by a Virtual Machine (VM). For 

Android, however, Google decided to use a different bytecode and VM format named Dalvik. 

During the compilation process of Android applications, Java bytecode is converted to Dalvik 

bytecode which can later be executed by the specially designed Dalvik VM. 
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2.2.1 Hardware constraints 

 
The Android platform was specifically designed to run on mobile devices and thus comes has to 

overcome some challenging hardware restrictions when com-pared to regular desktop operating 

systems: mobile phones are limited in size and are powered by only a battery. Due to this mobile 

character, initial devices contained a relatively slow CPU and had only little amount of RAM left 

once the system was booted. Despite these ancient specifications, the Android platform does rely 

on modern OS principles: each application is supposed to run in its own process and has its own 

memory space which means that each application should run in its own VM. 

It was argued that the hardware constraints, made it hard to fulfill the security requirements using 

existing Java virtual machines [23]. To overcome these issues, Android uses the Dalvik VM. A 

special instance of the DVM is started at boot time which will become the parent of all future 

VMs. This VM is called the Zygote process and preloads and preinitializes all system classes 

(the core libraries discussed in Section 2.1.3). Once started, it listens on a socket and fork()s on 

command whenever a new application start is requested. Using fork() instead of starting a new 

VM from scratch increases the speedup time and by sharing the memory pages that contain the 

preloaded system classes, Android also reduces the memory footprint for running applications. 

Furthermore, as opposed to regular stack-based virtual machines — a mechanism that can be 

ported to any platform — the DVM is register-based and is designed to specifically run on ARM 

processors. This has allowed the VM developers to add more speed optimizations. 

2.2.2 Bytecode 

 
The bytecode interpreted by the DVM is so-called DEX bytecode (Dalvik EXecutable code). 

DEX code is obtained by converting Java bytecode using the dx tool. The main difference 

between the DEX file format and Java bytecode is that all code is repacked into one output file 

(classes.dex), while removing duplicate function signatures, string values and code blocks. 

Naturally, this results in the use of more pointers within DEX bytecode than in Java .class files. 

In general, however, .dex files are about 5% smaller than their counter-part, compressed .jar 

files. It is worth mentioning that during the installation of an Android application, the included 

classes.dex file is verified and optimized by the OS. Verification is done to reduce runtime bugs 
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and to make sure that the program cannot misbehave. Optimization involves static linking, 

inlining of special (native) methods (e.g. calls to equals()), and pruning empty methods. 

2.3 Android applications 

Android applications are distributed as Android Package (APK) files. APK files are signed ZIP 

files that contain the app‘s bytecode along with all its data, resources, third-party libraries and a 

manifest file that describes the app‘s capabilities. Figure 2.3 shows the simplified process of how 

Java source code projects are translated to APK files. 

 

Figure 2-3 Android application build process [22] 

To improve security, apps run in a sandboxed environment. During installation, applications 

receive a unique Linux user ID from the Android OS. Permissions for files in an application are 

then set so that only the application itself has access to them. Additionally, when started, each 

application is granted its own VM which means that code is isolated from other applications. It is 

stated by the Android documentation that this way, Android implements the principle of least 

privilege as each application has access to only the components it requires to do its work. 
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2.3.1 Application components 

We now outline a number of core application components such as activities, services, content 

providers, broadcast receivers and intents that are used to build Android apps. For more 

information on Android application fundamentals, we refer to the official documentation [24]. 

Activities 

An activity represents a single screen with a particular user interface. Apps are likely to have a 

number of activities, each with a different purpose. A music player, for instance, might have one 

activity that shows a list of available albums and another activity to show the song that is 

currently being played with buttons to pause, enable shuffle, or fast forward. Each activity is 

independent of the others and, if allowed by the app, can be started by other applications. An e-

mail client, for example, might have the possibility to start the music app‘s play activity to start 

playback of a received audio file. 

Services 

Services are components that run in the background to perform long-running operations and do 

not provide a user interface. The music application, for example, will have a music service that is 

responsible for playing music in the background while the user is in a different application. 

Services can be started by other components of the app such as an activity or a broadcast 

receiver. 

Content providers 

Content providers are used to share data between multiple applications. They manage a shared 

set of application data. Contact information, for example, is stored in a content provider so that 

other applications can query it when necessary. A music player may use a content provider to 

store information about the current song being played, which could then be used by a social 

media app to update a user‘s ‗current listening‘ status. 
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Broadcast receivers 

A broadcast receiver listens for specific system-wide broadcast announcements and has the 

possibility to react upon these. Most broadcasts are initiated from the system and announce that, 

for example, the system completed the boot procedure, the battery is low, or an incoming SMS 

text message was received. Broadcast receivers do not have a user interface and are generally 

used to act as a gateway to other components. They might, for example, initiate a background 

service to perform some work based on a specific event. 

Two types of broadcasts are distinguished: non-ordered and ordered. Non-ordered broadcast are 

sent to all interested receivers at the same time. This means that a receiver cannot interfere with 

other receivers. An example of such broadcast is the battery low announcement. Ordered 

broadcasts, on the other hand, are first passed to the receiver with the highest priority, before 

being forwarded to the receiver with the second highest priority, etc. An example for this is the 

incoming SMS text message announcement. 

Broadcast receivers that receive ordered broadcasts can, when done processing the 

announcement, decide to abort the broadcast so that it is not forwarded to other receivers. In the 

example of incoming text messages, this allows vendors to develop an alternative text message 

manager that can disable the existing messaging application by simply using a higher priority 

receiver and aborting the broadcast once it finished handling the incoming message. 

Intents 

Activities, services and broadcast receivers are activated by an asynchronous message called an 

intent. For activities and services, intents define an action that should be performed (e.g., view or 

send). They may include additional data that specifies what to act on. A music player application, 

for example, may send view intent to a browser component to open a webpage with information 

on the currently selected artist. 

For broadcast receivers, the intent simply defines the current announcement that is being 

broadcast. For an incoming SMS text message, the additional data field will contain the content 

of the message and the sender‘s phone number. 
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2.3.2 Manifest 

Each Android application comes with an AndroidManifest.xml file that informs the system about 

the app‘s components. Activities and services that are not declared in the manifest can never run. 

Broadcast receivers, however, can be either declared in the manifest or may be registered 

dynamically via the registerReceiver() method. The manifest also specifies application 

requirements such as special hardware requirements (e.g., having a camera or GPS sensor), or 

the minimal API version necessary to run this app. 

In order to access protected components (e.g., camera access, or access to the user‘s contact list), 

an application needs to be granted permission. All necessary permissions must be defined in the 

app‘s AndroidManifest.xml. This way, during installation, the Android OS can prompt the user 

with an overview of used permissions after which a user explicitly has to grant the app access to 

use these components. 

Within the OS, protected components are element of a unique Linux group ID. By granting an 

app permissions, it‘s VM becomes a member of the accompanying groups and can thus access 

the restricted components. 

2.3.3 Native code 

It may be helpful for certain types of applications to use native code languages like C and C++ 

so that they can reuse existing code libraries written in these languages. Typical good candidates 

for native code usage are self-contained, CPU intensive operations such as signal processing, 

game engines, and so on. Unlike Java bytecode, native code runs directly on the processor and is 

thus not interpreted by the Dalvik VM. The increased complexity in Android native code should 

be compromised with suitable performance increase. Native code is not faster so the developer 

should optimize the native code and try to understand which piece of the application code should 

be native. If the developer does not have knowledge about native code or has no reason to use 

the native code it is better to stay away from it. 

2.3.4 Distribution 

Android users are free to install any (third-party) application via the Google Play Store 

(previously known as the Android Market). Google Play is an online application distribution 
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platform where users can download and install free or paid applications from various developers 

including Google. To protect the Play Store from malicious applications, Google uses an in-

house developed automated anti-virus system named Google Bouncer. 

Users have the possibility to install applications from other sources than Google Play. For this, a 

user must enable the unknown sources option in the device‘s settings overview and explicitly 

accepts the risks of doing so. By using external installation sources, users can install APK files 

downloaded from the web directly, or choose to use third-party markets. These third-party 

markets sometimes offer a specialized type of applications, such as MiKandi‘s Adult app store, 

or target users from specific countries, like Chinese app stores Anzhi and Xiaomi (a popular 

Chinese phone manufacturer). 

2.4 Android Threat  

There are several threats targeting the android smart mobile phone, below is some of the most 

common threats and their explanations. A single malicious application can show more than one 

of these threats. 

2.4.1 Spyware 

There are types of threats that spy on the users or steal the data on the user‘s smartphone. There 

are a number of apps that are the equivalent to commercial keyloggers found on PCs. These apps 

offer their services to ‗track‘ your kids, spouse or employees. These behaviors are easy to 

incorporate into an app and this begins with the easy task of requesting the necessary 

permissions. For example, requesting ACCESS_COARSE_LOCATION, 

ACCESS_FINE_LOCATION, and READ_SMS will grant you access to SMS messages and 

GPS location. Of course you will have to add the appropriate code, and if it is not a rooted 

device, permissions must be approved. Threats which have used these spying techniques are 

NickySpy, Spitmo, GGTracker and GoldenEagle. NickySpy is interesting in that it utilizes the 

MediaRecorder() class to turn on the microphone and discretely record and save conversations to 

the SDCard. It is also able to send captured data to a remote server, although this functionality is 

not hard wired in [25]. 
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2.4.2 Root exploit 

There are numerous examples of Trojans with root capabilities. These Trojans often have 

command & control functionality similar to what has been seen with PC botnets. Because these 

apps root, they gain escalated privileges and are able to bypass Android‘s permission model; 

thereby granting access to all functionality on the device without user notification. Taking 

advantage of known exploits in the Android OS, malware authors bundle these exploits in their 

APK‘s. The rooting exploits are the same ones made available by hackers for those willing to 

intentionally root their device. The two most prevalent ones target versions 2.1 and 2.2 of the 

Android OS (rage-againstthecage and exploid). Two notable examples of rooting malware are 

DroidDream and DroidKungFU. At the time these Trojans were discovered, version 2.1 and 2.2 

were the most distributed versions of the Android platform [25]. 

Trojans misusing these root exploits are among the most dangerous malicious applications and 

can cause all kinds of havoc, completely out of sight from the user. Like most Trojans, the 

malicious application pretends to be normal until it is installed on the user's device. When 

installed, it attempts to use one or more root exploits to gain root access to the device. An 

application with root access can replace, modify and install applications as it wishes, and as an 

example, the DroidKungFu Trojan installs a backdoor on the phone once it has gained root 

access. It then disguises this backdoor from the user both by using an innocent-looking name and 

hiding the application icon from the user. This backdoor can then be used to install other 

malicious applications on the device or simply stealing private information [25]. 

2.4.3 Botnet 

A botnet is a network of compromised devices, usually computers, which an attacker can use for 

his own purposes often to steal sensitive data or as part of a denial of service attack. The owners 

of the compromised devices might not even be aware of the infection beyond noticing that the 

device is operating slower than usual. The recent version of the DroidKungFu Trojan was used to 

create a botnet consisting of compromised Android devices [25]. 

2.4.4 SMS Trojans  

Android malware has evolved its tactics and distribution over the last two years. Two big news 

makers for Android malware were TrojanSMS, a premium-SMS Trojan, and DroidKungFu, a 
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bot with rooting capabilities. The premium-SMS Trojan is a lucrative form of malware that is 

simple to develop and has the added benefit that it uses alluring tactics which users tend to fall 

for. Recently, two groups that were caught distributing SMS Trojan‘s received some justice. The 

hackers responsible for the Foncy campaign were arrested in France with damages estimated 

around $150,000 and the other was a company, A1 Agregator Limited, who was responsible for 

the payment system RuFraud. They were fined $78,300. The SMS Trojan ‗FakePlayer‘ was the 

first fake app to charge for its use. It poses as a legit media player but would send out premium-

SMS messages without the user‘s knowledge. There was little sophistication to the malware 

other than tricking users in to running the program. These APK‘s are very small in size, around 

15KB, and when launched display a message in Russian, ―Click OK to access the video library‖ 

and a second message of ―Wait, requested access to the video library.‖ While you are waiting, 

premium-SMS messages are sent, costing the unsuspecting user money [25]. 

2.4.5 Drive-by-download 

In May of 2012 the first reports of drive-by downloads targeting Android browsers were seen. 

Drive-by downloads have been the bane of Internet browsing in the desktop environment for 

many years now and this infection vector has evolved to target Android devices. This is just 

another example of how fast the Android malware landscape is evolving. This particular threat 

typically utilizes a hidden iframe tag located at the bottom of a hacked website. These websites 

specifically look for Android user-agent strings before serving the malicious iframe, therefore 

the payload would only be delivered when visiting the site with an Android browser. When the 

site is visited with an Android browser, the iframe would trigger the browser to download and 

execute the payload. Another common vector for infection which primarily targets PC‘s is the 

web exploit kit. BlackHole is a very common example which cycles through various PC based 

exploits in its attempt to execute a malicious binary. It is not long before web exploit kits will 

have a module looking to infect mobile devices [25]. 

2.5 Android Security Overview 

Android seeks to be the most secure and usable operating system for mobile platforms by 

repurposing traditional operating system security controls to: 

 Protect user data 
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 Protect system resources (including the network) 

 Provide application isolation 

To achieve these objectives, Android provides these key security features: 

 Robust security at the OS level through the Linux kernel 

 Mandatory application sandbox for all applications 

 Secure interprocess communication 

 Application signing 

 Application-defined and user-granted permissions 

At the operating system level, the Android platform provides the security of the Linux kernel, as 

well as a secure inter-process communication (IPC) facility to enable secure communication 

between applications running in different processes. These security features at the OS level 

ensure that even native code is constrained by the Application Sandbox. Whether that code is the 

result of included application behavior or exploitation of application vulnerability, the system 

would prevent the rogue application from harming other applications, the Android system, or the 

device itself. 

The foundation of the Android platform is the Linux kernel. The Linux kernel itself has been in 

widespread use for years, and is used in millions of security-sensitive environments. Through its 

history of constantly being researched, attacked, and fixed by thousands of developers, Linux has 

become a stable and secure kernel trusted by many corporations and security professionals [26]. 

As the base for a mobile computing environment, the Linux kernel provides Android with 

several key security features, including: 

 A user-based permissions model 

 Process isolation 

 Extensible mechanism for secure IPC 

 The ability to remove unnecessary and potentially insecure parts of the kernel 
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2.5.1 Permissions 

Every application that a user installs comes with a request for a set of application-specific 

permissions that is set by the applications developer. These permissions allow the application to 

access system (or other application‘s) data or services. These include things like 

READ_CONTACTS, which grants permission to read the user‘s contact book and SEND_SMS, 

which allows the application to send SMS messages. Additionally, custom permissions may be 

created and used by the application. For instance, an application could use a custom permission 

to restrict other applications from using its service. Permissions for each application are found in 

their individual AndroidManifest.xml files created by the developer and placed on the mobile 

device as part of the installation process. These permissions are displayed to the user who must 

agree to them in order to install the application. An example of this process is shown in Figure 

3.1. The permission system [27] provides a good framework for determining what resources an 

application will have access to once it has been installed on a device. Developers can also create 

their own permissions [28], which can be used to give other applications access to features in the 

application. These permissions are not explicitly stated to the users during installation, but can be 

determined by examining the Android manifest file. 

There are four protection levels for permissions: 

Normal – Permissions for minor features like VIBRATE. Android package installer will not ask 

the user for approval for these permissions [29]. 

Dangerous – Permissions for features that can reconfigure the device or incur fees. Users will be 

explicitly warned about dangerous permissions on install. 

Signature – The permissions are only granted to other applications signed with the same key as 

this program. Signature permissions are only available to an application that is signed with the 

same certificate as the certificate that was used to sign the application declaring the permission 

[29]. 

SignatureOrSystem – These permissions are for programs installed as part of the system image 

and typically aren‘t be used by developers. 
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Figure 2-4 Request of permission during installation (left) and the permissions of an installed 
application (right) [27] 

 

This system of requesting and granting permission puts a great deal of the responsibility for 

security in the hands of both the developer and user. The user must be aware of both what the 

application is advertising it does and the permissions it requests. Fortunately, the application 

reviews on the Android Market and developer‘s reputation may help alert naïve users who 

attempt to install malicious or insecure applications on their devices. 

There are however some issues with the permission system, but these are problems with 

implementation of the permissions rather than the permissions them-selves. Effectively, the 

permission system can be circumvented as demonstrated by [30] in their Blackhat talk, where 
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they revealed that the RECEIVE BOOT COMPLETED permission is not actually checked. This 

means that any application could register to start when the phone is turned on, and the system 

would not actually verify whether or not the application had requested this permission. It is 

currently unknown if this affects any other permissions.  

2.5.2 Sandbox 

 
Each Android package (.apk) file installed on an Android-powered device is given its own 

unique Linux (POSIX) user ID. This user ID is assigned when the application is installed on the 

device. Consequently, the code of two different packages cannot run in the same process. In a 

way, this creates a sandbox that prevents one application from touching other applications (or, 

vice versa, other applications from touching it).  In order for two applications to share the same 

permissions set and possibly run in the same process, they must share the same user ID, which is 

only possible through the use of the sharedUserID feature. To share the same user ID, two 

applications must explicitly declare the usage of the same sharedUserID and both must bear the 

same digital signature .As mentioned in Section 2.5.1, the developer can effectively open the 

gate to the sandbox by allowing other applications to access features of the application by 

declaring their own permissions. This makes it possible for other applications to interact with the 

application despite the sandbox [8, 27]. 

2.5.3 Application signing 

 
Each application in Android is packaged in an .apk archive for installation. The .apk archive is 

similar to a Java standard jar file in that it holds all the code (.dex files) for the application. In 

addition it also contains all the application‘s non-code resources such as images. The Android 

system requires that all installed applications must be digitally signed (code and non-code 

resources).The signed apk is valid as long as its certificate is valid and the enclosed public key 

successfully verifies the signature. Signing applications in Android is used to verify that two or 

more applications are from the same owner (―same -origin‖ verification). This feature is used by 

the sharedUserId mechanism and by the permission mechanism to verify Signature and 

SignatureOrSystem protection level permissions [8]. 
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2.5.4 Remote kill switch 

 
The Google Play application has the ability to remotely remove applications from users' handsets 

when the application is violating the Developer Distribution Agreement [12] or the Developer 

Program Policies. In most cases, applications that violate these agreements are malicious in one 

way or another, and this capability has been utilized to remove malicious applications on more 

than one occasion after the applications have been removed from the market itself. The remote 

kill switch is however only useful against applications installed through the Google Play market. 

Applications installed through unofficial channels are not affected by this feature [31]. 

2.5.5 File System and User/Group Permissions 

 
As in any Unix/Linux-like operating system, basic access control is implemented through a 

three-class permission model. It distinguishes between the owner of a file system resource, the 

owner‘s group and others. For each of these three entities, distinct permissions can be set to read, 

write or execute. This system provides a means of controlling access to files and resources. For 

example, only a file‘s owner may write (alter) a document, while members of the owner‘s group 

may read it and others may not even view it at all. In traditional desktop and server 

environments, many processes often share the same group or even user ID (namely the user ID 

of the user who started a program). As a result, they are granted access to all files belonging to 

the other programs started by that same ID [8]. 

However, for mobile operating systems this is not sufficient. Finer permission distinction is 

needed, as an open app market is not a strongly monitored and trustworthy software source. With 

the traditional approach, any app executed under the device owner‘s user ID would be able to 

access any other app‘s data. Hence, the Android kernel assigns each app its own user ID on 

installation. This ensures that an app can only access its own files, the temporary directory and 

permission protected system resources are available through API calls. This establishes a 

permission-based file system sandbox [8]. 

2.5.6 Google Bouncer 

 
Google have responded to criticism about Google Play with introducing a new layer of security, 

named Bouncer. Bouncer checks new applications when they are uploaded to the market to 
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identify potentially malicious applications, even going as far as to simulate the application 

running on an Android device to catch any hidden behavior. This is however an automated 

process that uses the characteristics of known malware to analyze the applications, which means 

that novel malware, will not be detected by the bouncer [32].  

2.5.7 Anti-malware applications 

 
To identify and remove malware, anti-malware software for mobile devices examines all files in 

specified locations, email attachments, the memory, system configuration, MMS, Bluetooth 

objects and other relevant areas. It usually identifies and exterminates known malware based on 

a signature repository. Anti-malware is a well-known solution and is extensively used in other 

platforms. Signature-based solutions provide low false-positives, but will only detect known 

malware and require continuous updating of the signature repository. At this time, the anti-

malware solution does not seem to be effective for mobile devices [8]. 

2.6 Intrusion Detection System 

2.6.1 Definition 

An Intrusion Detection System, also known as an IDS [35], is a device or software application 

which monitors a network or system for malicious activities [34].There are many different types 

of IDS. The aim of an IDS is to identify and detect anomalies in the system or device that is 

being monitored. Some classes of IDS will be described below. 

Network-Based  

The Network-Based Intrusion Detection System (NIDS) is an intrusion detection system that 

analyzes network traffic, makes decisions about the purpose of the traffic and scans the network 

for suspicious activity [33]. 

Wireless 

The Wireless Intrusion Detection System (WIDS) is similar to the NIDS. Instead of analyzing 

wired network traffic it can analyze wireless traffic to detect suspicious activity [33]. 
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Host-Based 

Host-Based Intrusion Detection Systems (HIDS) monitor all activity that occurs on the host 

being monitored. This system is capable of monitoring features of the system such as power 

consumption, opened files, system call logs, etc [33].In this thesis work we use a Host-Based 

Intrusion Detection System. 

2.6.2 Detection types 

As regards types of IDS detection, we can divide these into two: Signature-Based or Misuse 

detection and Anomaly-Based detection. 

Misuse detection 

The technique of Misuse detection searches for specific indications or patterns of attacks, 

identifying raw byte sequences, protocol type, port numbers, etc. The aim of this type of 

detection is to find patterns in raw data. Signatures are then created by a group of experts who 

analyze the code, behavior and manifestation of the malware. Most antivirus companies still use 

this technique to create malware signatures and patterns. One of the disadvantages of this 

detection type is that the system must be familiar with all malware patterns and signatures in 

advance. This type of detection limits the ability to detect new malware [33]. 

The process of finding and identifying new types of attacks and malware manually takes experts 

a great deal of time. Antivirus companies are trying to come up with different alternatives in 

order to avoid this problem through use of automated processes.  

Anomaly-Based detection 

Anomaly-Based Intrusion Detection Systems use a prior training phase to establish a model for 

normal system activity. This mode of detection is first trained on the normal behavior of the 

system or application to be monitored. Using this model of normal behavior, it is possible to 

detect anomalous activities that are occurring in the system by searching the system for strange 

behavior. This technique is more complex and requires more resources than Misuse detection. 

Despite this, it has the advantage of being able to detect new attacks [33]. 

Typically, Misuse detection tries to identify/classify the new object by consulting known 

malware or malicious behavior patterns stored in a signature database. Unknown objects are 



25 
 

compared with database objects, and if a match is found between the unknown object being 

analyzed and the database object, the unknown object will be considered suspicious or malware. 

If there is no match, it will be classified as unknown [33].Anomaly-Based detection, on the other 

hand, creates a pattern of normal behavior based on the system's model of normality. New 

objects will be compared with the normal behavior pattern, and if any of the objects show any 

abnormal activity compared to that pattern of normal behavior, they will be considered malicious 

applications. 
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Chapter 3 

Related Work 

Research focusing on Android security and Mobile malware in general has been an increasingly 

popular topic over the last decade. This chapter provides an extensive overview of related work 

in the field of Android security. 

3.1 Background and Surveys 

Malware has been a threat for computers for many years and continues to cause irreparable 

damage to infected systems. The first attempts to identify and analyze malware on smartphones 

started by adapting existing PC security solutions and applying them to mobile phones. This was 

not a feasible solution in light of the high demand placed on resources by antivirus techniques 

and the power and memory constraints of mobile devices. Since malware and intrusion detection 

systems have already been the subject of massive research, we will give just a brief review of the 

evolution of malware and malware detection techniques [36, 37]. 

The summary of most common malware detection techniques are examined in [38]. Their report 

examined 45 different malware detection techniques in the fields of anomaly-based detection, 

specification-based detection and signature-based detection. All techniques explained in this 

report are very useful background information in order to understand the first approaches to 

malware detection that can also be used in smartphones. 

The paper [39, 40] explored the detection of malicious applications and used different 

approaches to detection based on dynamic analysis of malicious or infected applications. They 

used different approaches and detection techniques based on dynamic analysis that are used to 

detect malicious or infected applications. The paper provides useful information about malware 

detection techniques and tools used in dynamic analysis of malware. [41] Introduced battery-

based intrusion detection, a host-based intrusion detection system. This technique monitors 

anomalous behavior of smartphone batteries based on power consumption. [42] Evaluated the 

power consumption of devices with a client application installed on a smartphone using the 

Symbian OS.The application monitored power consumption data and sent a report to a remote 

server to analyze and detect anomalies in the system.  
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SmartSiren, a collaborative virus detection application for Windows Mobile 5 [43]. It collects the 

communication activity from smartphones and performs system log file analysis to detect 

anomalous behavior in the system. The system uses a proxy-based architecture that interacts with 

a client installed on devices in order to avoid a heavy processing load. [44] Presented a novel 

approach to static malware detection in resource-limited mobile environments. Their approach 

detects malware by extracting function calls from binaries in order to apply a clustering 

algorithm to the data. This technique was used for detecting Symbian OS malware depending on 

a mobile phone's features, such as device efficiency, speed and limited resource usage. In 2006 

Symbian was the most widely used smartphone OS and many malware detection techniques 

were developed for this platform. Due to the imminent growth of smartphones with the Android 

OS, malware researchers decided to switch their malware detection techniques and security 

mechanisms to Android platform [45]. 

A number of studies focus on analyzing Android‘s security mechanisms. Before the first Android 

phones were even released in 2008, [41] was the first to discuss the security of Android 

smartphones with a focus on its Linux side. They state that Android‘s open character represents a 

great opportunity for researching security aspects on mobile devices. One of the first studies 

done on Android‘s permission model was done by [39]. This work details Android‘s internal 

components and their interaction. 

 A research on malicious applications for Android [46] proposed a solution based on monitoring 

events occurring at the Linux kernel level. They used a monitoring application to extract features 

such as executed system calls, modified files, etc. from the Linux kernel. These features were 

used to create the smartphone normality pattern. The same group proposed static analysis in 

2009[47] and an Android application sandbox system in 2010[64]. The first report presented a 

collaborative scenario in which different devices could perform static analysis of malware 

directly on the phone. The second method used an Android application sandbox, a totally secure 

environment, to perform static and dynamic analysis. Static analysis disassembled Android APK 

files to detect malware patterns. During dynamic analysis, all of the events occurring on the 

device (opened files, accessed files, battery consumption, etc.) were monitored. This sandbox 

provided a secure environment where malware applications could be executed without any risk 

of infection. 
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TaintDroid [16] proposed real-time monitoring and analysis of sensitive data with dynamic taint 

tracking. This technique taints data from privacy-sensitive sources and applies labels as sensitive 

data propagates through program variables, files, and inter-process messages. When tainted data 

leaves the system, the application scans for suspicious outgoing data. [48, 49, 50] have proposed 

another solution for malware detection on smartphones based on Support Vector Machines 

(SVM) and learning machines, an extension to the Android mobile phone platform that tracks the 

flow of privacy-sensitive data through third-party applications. Their research work consists of 

monitoring smartphone devices to determine their normal behavior and using collected data to 

train a learning machine. This learning machine will learn the normality model of the smart-

phone and applications and alert the user every time it detects a suspicious action. The system 

proposed by [51, 52] in which they perform a complete malware analysis of the phone in a 

virtual environment on a remote server. In both reports, they explain how to create replicas from 

Android devices and apply malware detection techniques to these Android mobile phones. The 

replicas are an equivalent version of the real mobile devices, and will be sent to the remote server 

for malware analysis. Mobile phone replicas will run in a secure virtual environment where 

different malware detection techniques are applied. 

Androguard [69] is cloud based Android application analysis framework which decompile and 

analyze a given application, with the goal to detect malicious applications via signature 

matching.  

An interesting system that uses dynamic analysis for android malware detection is Crowdroid 

[68]. It uses system call traces of running apps on different Android devices and applies 

clustering algorithms to detect malwares. The tool they mainly used was strace, which is also 

available in Linux. Their system hijacked system calls to collect information of events generated 

by Android applications and created an output file. The output file could be uploaded to remote 

servers for further analysis to detect malware. In [67] they describe that the method of 

monitoring and intercepting system calls on kernel level lacks practicability. The most important 

reasons are listed on their paper are as follows:  

1. It is not efficient. System calls are basic interfaces provided by an operating system, and 

they are the only entrance for processes to enter kernel mode from user mode. 
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2. It is not applicable for real Android devices. The kernel of a real Android device cannot 

use loadable kernel modules. In other words, the code written by developers will never 

have the chance to run on kernel level without recompiling the kernel. Therefore, it is 

impossible to monitor and intercept system calls on kernel level for real Android devices. 

 

In 2010, [53] performed a comprehensive security assessment on the Android framework. They 

list a number of possible countermeasures for tackling indicated high-risk threats to Android. 

Most of these threats are still applicable: 

1. Maliciously using the permissions granted to an installed application. 

2. Exploiting vulnerability in the Linux kernel or system libraries such as root exploitation. 

3. Exposing private content. 

4. Draining resources. 

5. Compromising the internal/protected network. 

The paper proposes several recommendations to improve Android‘s security mechanisms in 

respect to these threats. Most research started from that moment on focused on threat groups 1) 

and 3) as it turned out that a large part of Android malware originates from these threats. This is 

confirmed by a Symantec Research white paper from 2011 that addresses the motivations of 

recent Android Malware [54]. This paper concludes that the current mobile monetization 

schemes have a low revenue-per-infection ratio. It was expected that this ratio would increase 

when more devices store credentials backed by monetary funds. Something realized less than a 

year in later already in 2012 with the Eurograbber attack campaign, responsible for stealing over 

€36,000,000 [9]. In [55], they study 1100 popular free Android applications using the ded 

decompiler. A survey paper from 2011 provides an overview of mobile network security and 

used attack vectors and make statements on future research [56]. Similar work was done by [57]. 

On [58] they performed analysis of 46 pieces of iOS, Android, and Symbian malware that spread 

in the wild from 2009 to 2011. [59] Provides a more extensive research which covers 1260 

Android malware samples distributed among 49 different malware families. The huge data set 
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was released to the research community as the Malgenome Project and has been used by many 

subsequent research papers. They categorize existing ways Android malware is distributed into 

three social engineering-based techniques: 1) repackaging; 2) update attacks; and 3) drive-by 

downloads. For all techniques described in the paper, however, users are always tricked in 

installing the often over-privileged malicious application. 

An existing work which is partially similar to our approach in monitoring the system behavior 

and relies on machine learning techniques is Andromaly [1], which monitors both the 

smartphone and user's behaviors by observing several parameters, spanning from sensors 

activities to CPU usage. 88 features are used to describe these behaviors; the features are then 

pre-processed by feature selection algorithms. The authors developed four malicious applications 

manually to evaluate the ability to detect anomalies.  

The other research work similar in permission combination analysis to ours is [66]. It defines 

security rules manually by studying the behavior of different Android applications. The 

permission rules used in this work are based on the potential for misuse that means they assume 

if an applications request for sensitive system resources then their rule will alert the user about its 

maliciousness.The rules are not generated by performing experments on malicious or benign 

applications. Thus their work is as good as their manually generated rules or patterns. 

Most of the other approaches only monitor misbehaviors on a limited number of functionalities 

such as outgoing/incoming traffic, SMS, Bluetooth and IM, or power consumption and, 

therefore, their detection accuracy may be higher but their technique of monitoring behavior of 

system is less general. 

 Angry Birds Bonus Level, Tip Calculator, Tap Snake, Monkey Jump and Steamy Window are 

the most famous malicious applications to date on the Android platform. Furthermore, more than 

50 infected applications were found on Google's Android market in March 2011, all of them 

infected with the DroidDream Trojan application [60]. Another attack targeting the Android 

platform was carried out by J. Oberheide. He developed the Angry Birds Bonus Level for the 

Android OS. This application was a proof-of-concept malware application to showcase the weak 

security of the Android marketplace. The Angry Birds Bonus Level malware purports to be an 

additional bonus level for the famous game Angry Birds. The malicious application downloads 
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and installs three additional applications on the user's device in order to steal sensitive 

information. These applications were available in Android's official marketplace for over five 

months, but were removed after they were discovered to be stealing sensitive information from 

mobile phone devices [61].  

A mobile security service provider [62] discovered a spyware application called Tip Calculator 

in the Android market. The spyware sent all incoming and outgoing SMS messages in the system 

to a designated email address. Another piece of spyware with similar characteristics discovered 

in non-official Android repositories was Steamy Window [63]. A Trojan Horse called Android 

Pjapps modifies the original version of this application and wages an attack by subscribing to a 

SMS premium service. 

The purpose of this thesis is to improve on and contribute to malware detection strategies for the 

Android OS by offering up new ideas and techniques. The approach used in the thesis is based 

on detecting Android malware by monitoring different android device and application 

behaviours.The aim of monitoring the system behavior is to obtain data enabling us to 

differentiate between normal and malicious use of a device. A lightweight application is installed 

on the device which collects different features of the android system and passes the collected 

features to a machine learning algorithm within a specified period of time for detection analysis. 
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Chapter 4 

Design and Implementation 

In this chapter, the scope of the lightweight android security analysis framework will be defined.  

The first part discuss about the framework‘s design in Section 4.1, followed by implementation 

of the framework in Section 4.2. 

4.1 Design 

In order to implement a lightweight host-based framework for behavioral analysis of Android 

smartphone, we have to come up with a solution for main problems such as: 

 What kind of information would we like to collect from the Android platform and the 

application? 

 How to design such framework in resource constraint smart mobile phones? 

 Which features best represent the behavior of Android smartphones? 

4.1.1 What to collect 

In general, in order to apply any machine learning classifier it is important to first be able to 

collect relevant features from the targeted system as such overview provides good insight about 

the system. We selected the features/group of features based on their availability (i.e., the ability 

and ease of their extraction) and based on our experimental analysis of the features that will be 

most helpful in detecting a malware. Since Android is an open source and extensible platform it 

allows to extract as many features as we would like [1]. However, extraction of a large number 

of features on a mobile device is a very inefficient and resource wasting process. Additionally, 

machine learning classification models and detection with a large number of features is much 

more computationally expensive.  Furthermore, the presence of redundant or irrelevant features 

may decrease the accuracy of the machine learning algorithm. Thus, in this thesis work only 

system information that is accessible from Android application-level framework using the APIs 

,provided by the Android Software Development Kit (SDK), which represent the system and 

application behavior are used to avoid computationally extensive analysis. In order to compare 
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the feature sets used in our thesis work, we have analyzed and evaluated all feature sets used in 

this thesis separately and, then combined them for final evaluation of the whole framework. 

4.1.1.1 Requested Permissions of Apps 

In order to obtain these features, we first extracted the permissions used by each of the installed 

applications.  To this extent, we employed the aapt tool (Android Asset Packaging Tool), 

available within the set of tools provided by the Android SDK. The requested permission of 

applications were selected for two main reasons: first gathering these features using android API 

calls has low computing overhead and second they can manifest the behavior of the applications. 

Several existing studies have examined Android applications' use of permissions. But most of 

them use the number of permissions required by the application and they also take into 

consideration the existence of certain dangerous permissions to predict whether a certain 

application is goodware or malware. This approach lacks practicability since there are different 

research works that show the number of permissions required by each of the categories (malware 

and benign) is similar. Therefore, malware authors can easily defeat the number of permission-

based classifiers through merely declaring permissions which are found in benign applications. 

The number of permission-based classifiers will not also be able to correctly classify repackaged 

android malware applications which are based on legitimate applications but embeds extra 

payload to achieve a malicious goal. 

 In this thesis work a new approach which cannot be tricked by the above techniques is provided. 

The proposed method in this thesis for the permission feature is that, instead of analyzing 

individual permissions requested by the applications, we try to find combination of dangerous 

permissions which are found in malware applications only as well as those found in both. We 

also analyzed the deviation of these permission combinations in terms of usage by the two 

application categories (malware and benign). 

4.1.1.2 Intent action of Apps 

Intents are used to communicate between components of an application or components of 

different applications. The intent messages are used to activate three of the application 

components activities, services, and broadcast receivers. In this thesis work we have analyzed the 

intent action since it can tell us what actions can be taken. Most well-known android malwares 
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like to listen for special kind of Android system intent information and try to activate their 

activity to run at the background and send the users sensitive information to remote servers 

owned by attackers. Thus the intent information is what we want to monitor to find out its 

relation with android malwares. We have analyzed the intent information of the collected benign 

and malware applications using the aapt tool in android SDK. 

4.1.1.3 Network behavior of Apps 

Each mobile application has its own network behavior and monitoring the network behavior of a 

certain application can be used to identify whether the application is malware or not. Researches 

usually focus on monitoring network behavior at the level of network layers, such as switches, 

routers, and gateways.  But nowadays researchers show that monitoring applications network 

behaviors can be used for behavioral malware detection in smartphones. This approach is 

effective since many malware applications use network communication for their needs, such as 

sending malicious data or getting user‘s sensitive information/data from the device remotely. 

Such types of behavior affect the network behavior of the application and an abnormal network 

behavior of an application running on smart mobile phones, like Android; can be identified by 

using machine learning algorithms. 

In this thesis we have collected network features that can best represent the behavior of android 

applications by using APIs provided by Android SDK. Below is a list of the collected features: 

 Average number of sent\received bytes and average increments in their values: Since 

malicious applications have a background service that sends and receives data without the 

user intention they have significant difference with their benign counterparts. Thus these 

features are chosen for this thesis work. 

 Application state: to check whether the application is running in foreground or 

background. Most of the time malware applications behave to run in background and 

send sensitive user information to remote server. Therefore it is a reasonable feature for 

malware detection. 

 Average number of sent\received packets and average increments in their values:  one of 

the most characteristics of malwares of android is that they steal user information and 

send it to a backend server. Therefore the malicious transfer of data with user information 
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included will have distinguishable size from the other packet sizes originating from 

benign applications. 

4.1.2 Framework design 

We decided to build a Java based framework that consists of real time monitoring, collection and 

analysis of various features of the android platform. The theoretical design for this framework is 

show in Figure 4.1. There are three major components included in the framework: the feature 

extractor unit, the collector unit and the classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Design for Lightweight Android Security Auditing Tool 

 

The feature extractor unit is responsible for extracting features described in section 4.1.1 above 

from Android application level framework using the APIs provided by the Android SDK. The 

collector unit is responsible for collecting the features extracted, within the specified period of 

time (which is 5 seconds in our thesis work), and prepare them in ARFF file format. The 
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classifier unit then states the vectors given as input from the collector unit as malicious or not. If 

malicious vectors detected the classifier unit sends a notification to the user. 

 

4.1.3 Dataset description 

Benign App Dataset: we have collected the benign apps from Google Play which is one of the 

largest and most reliable Android markets. We have collected 2,226 applications from all the 

categories found on the market. The number of benign applications and their category is shown 

in Table 4.1. 

Category Count  Category  Count 

Arcade and Action 120 Music & Audio 108 

Books and references  105 News & magazines 105 

Business 54 Personalization 109 

Card Games 20 Photography 45 

Casuals 33 Productivity 48 

Comics 53 Puzzles and brain 32 

Communication 99 Races 23 

Education 83 Shopping 42 

Entertainment 105 Social 110 

Finance 50 Sports 68 

Health 46 Tools 111 

Libraries & Demos 97 Transportation 45 

Lifestyle 87 Travels 53 

Medicine 103 Weather 48 

Multimedia & Video 103 Widget  121 

 

Table 4-1The number of applications in each category 

Malware Dataset: The Contagio Mobile Dump [70] was used as the source of our malicious 

data set. Contagio mobile dump site have malicious applications which are uploaded by the 

public and any one can download it from their database for research propose only. We manually 
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collected 219 malware applications from this site. The total number of applications is shown in 

Table 4.2. 

 

Applications  Count  

Benign  2226 

Malware  219 

 

Table 4-2The total number of applications in our data set 

 

 

4.2 Implementation 

We have implemented the framework on Android emulator, with OS gingearbread version 

2.3.6and Linux kernel version 2.6.35.7. The emulator provides a controlled environment for 

managing different functionalities such as phone calls, SMS messages, network traffic etc. In 

order to extract and collect the features we have developed an Android application, using Java, 

running on the Android Emulator or the device. The application collects the most essential 

features used in this thesis work such as dangerous permission combination used by installed 

applications, network behavior of running apps, and intent information used for inter process 

communication. The collector unit records the features collected in .arff file format and the file is 

sent to classifier which has been previously trained to determine if the vectors collected are 

similar to those obtained from previously seen malwares. For classification we used Weka 

version 3.6.6, an open source library in Java that includes several classification tools. 

During the training and testing of the classifiers we used a self-written shell script running on a 

desktop computer with Intel core i3 2350M CPU at 2.30 GHZ and 4GB of RAM. The operating 

system of this machine is Microsoft Windows 7. The aim of the shell script is to collect as much 

feature as possible from the Android emulator and applications running on it. The script was 

used to: 

1. Take as input the training APK files in the Training folder and testing APK files in the 

Testing folder  
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2. Install/uninstall applications on the emulator 

3. Start/stop the feature extractor application  

4. Activate the ADB Monkey tool to interact with the applications 

5. Output the collected features in ARFF file format 

6. Train and test classifiers using the collected feature vectors in step-5 

The Training and Testing data folders contain both malicious and benign applications. To train 

the model classifier we used the APK files found in the Training folder and APK files in the 

Testing folder are used to test the model. For training phase we use 1557 benign applications and 

154 malware applications and for testing phase we use 669 benign and 65 malware applications. 

The shell script will install applications from the Training folder and activate the Monkey tool to 

interact with the installed application. The script then starts monitoring and collecting the 

features used in this thesis work during the running of the applications on the emulator. 

Afterwards, the script will uninstall the application from the emulator and create a clean instance 

of the system or emulator. This ensures that every application has the same initial emulator 

condition during the feature collection. Applications in the Testing data folder will undergo the 

same steps as the Training data folder applications. Figure 4.2 describes the procedure of the 

shell script in detail. 
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Figure 4-2 Script process during feature extraction and model learning 
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4.2.1 Tools used during implementation  

Table 4.3 describes the tools used during the implementation of the proposed framework. 

Tools  Description  
Microsoft Windows 7 It was used as the main OS during the framework design. 
Eclipse Eclipse is a platform for programming, development, and 

Compilation of Java, C++ and many other programming 
languages. We use Eclipse which is bundled with Android 
SDK tool to develop the proposed framework. 

Android emulator It is a virtual mobile device included with the Android SDK. 
We use the emulator to run the applications and extract the 
features without the need for real devices. 

Shell scripts  It was used to automate the feature extraction process using 
the Android emulator running in Microsoft Windows 7. 

Samsung GT-S5300 It is Android OS based mobile device. We use it to measure 
the performance overhead of the framework. 

 

Table 4-3 Tools used during implementation 
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Chapter 5 

            Experimental Result and Evaluation  

In this section we will describe in detail the experimental results which are used to show whether 

or not the features used in this thesis work are effective in detecting malware application 

behaviors. First we analyze the features individually and evaluate their performance in terms of 

their detection accuracy using different machine learning algorithms. We use J.48, BaysNet, 

Naïve Bayes and Random forest machine learning algorithms during evaluation of our proposed 

solution. During individual feature analysis we do not use the entire applications we have 

collected since monitoring the behavior of the application using the emulator was taking long 

time. Then we take the combined features to evaluate our proposed malware detection 

framework using different machine learning algorithms. This time we monitor the behavior of 

the entire application. The machine learning algorithm with higher detection accuracy was used 

as a classifier model during the framework development as Android application. 

5.1 Analyzing the requested permission feature 

Even though there are existing research works[65,66,71] which focus on analyzing the android 

application permission request and their combinations none of them try to compare the 

permission usage in malware and benign applications to find out permission combinations that 

can be used to detect malicious android application.  

In this theses work we have developed a new approach to analyze the android application 

permission system. We have used an association rule mining algorithm to find out the most 

widely used dangerous combination of permissions in both malicious and benign applications 

and compare and contrast their usage in terms of the support value they provide to each category 

of application (malware and benign). This approach is effective since it cannot be tricked by 

malware developers unlike those approaches which used the number of requested permission and 

individual permission based analysis to detect malware. The flow chart given in figure 5.1 shows 

the procedure followed during analysis of the permission feature in our thesis work. 

Our approach for analysis of the permission-based feature set is divided in to two sections: 

1. Finding out the most repeatedly used permission combinations 
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To find out the most repeatedly used permission combinations we have used an association rule 

mining algorithm called Apriori algorithm. The algorithm works as follows: 

I. First generate level-K permission candidates that have high support value 

than the minimum support given as input for the algorithm. For the 

minimum support value we have selected the best value by performing 

experiments with different support value given as input for the algorithm. 

The support value is how frequent a certain item set (permission or 

combination of permission) occurs in the given dataset and it is calculated 

by: 

 

Supportvalue(X) =    number of transactions that contain X 

                               total number of transactions in the given dataset 

 

In our thesis the transaction is the individual permissions requested by the 

given application. 

II. Then generate the next level-(k+1) permission candidate from the previous 

level-(k) permission candidate and the algorithm continues until no more 

candidates to be generated.   

2. Calculating the deviation of the permission combinations in terms of their support 

value. This is step is explained in detail in the following paragraph.  

Once we generate the most repeatedly used permission combinations by using step 1 above then 

we try to find out an interesting permission combination that is unique to malware class or 

common for both malware and benign class applications. This step is done by comparing the 

difference between the support values of the permission combinations of malware and benign 

datasets generated in step 1. We have taken an experimentally selected value of minimum 

threshold to compare the difference in support value for a given permission combination. For 

example if Msupp(x) be support value for malicious dataset for permission combination x and 

Bsupp(x) be the support value for the benign dataset then this permission combination will be 

interesting if and only if Msupp(x) – Bsupp(x) > minsuppdiff where minsuppdiff is the minimum 

threshold value given as input for calculating the deviation. 
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                             Figure 5-1 Flow chart diagram of the permission feature analysis 

Remove the 

candidate  

No  

Yes 
No 

last iteration? 

Yes 

No 

Check for interestingness 

Msupp(x) – Bsupp(x) >minsuppdiff 

 

Output the interesting 

permission combination 

End 

Yes  

Continue to generate next 

permission combination 

Start 

Malware dataset Benign dataset 

Candidate permission 

combination generation 

Check for support value 

Bsupp(x) >minsupp or                

Msupp(x) >minsupp 

 

 



44 
 

Experiment 1: Minimum support value of 0.05 and minimum threshold for 

difference (minsuppdiff) of 0.20 

No  Generated permission combination 

1 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.RECEIVE_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

2 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]   

3 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.READ_SMS, android.permission.RECEIVE_SMS]   

4 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.READ_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

5 [android.permission.INTERNET, android.permission.READ_SMS, android.permission.SEND_SMS, 

android.permission.WRITE_EXTERNAL_STORAGE]   

6 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.READ_SMS, android.permission.SEND_SMS]   

7 [android.permission.INTERNET, android.permission.RECEIVE_SMS, 

android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

8 [android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]   

9 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 

android.permission.READ_PHONE_STATE, android.permission.SEND_SMS]   

10 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 

android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

11 [android.permission.INTERNET, android.permission.READ_SMS, 

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]  

12 [android.permission.INTERNET,android.permission.READ_PHONE_STATE, 

android.permission.READ_SMS,android.permission.RECEIVE_SMS,android.permission.SEND_SMS]   

 

Table 5-1 Permission combinations generated using experiment 1 
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We have analyzed the collected benign and malware datasets experimentally by collecting the 

most essential permission combinations that are unique in malware dataset and common in both 

datasets. During the experimental analysis of the permission features we have selected different 

values for the minimum support value and minimum threshold for the difference (minsuppdiff) 

to get the best value. By comparing the detection accuracy, from the machine learning algorithm, 

of these experimental results we finally chose to use 0.03 for the minimum support value and 0.1 

for the minimum threshold for difference. Table 5.1 shows the permission combinations 

generated by using the experiment 1. 

Next, we trained our classifier by using permission combinations statistics collected by running 

benign and malware applications on android emulator and we have collected the permission 

combination features for 589 benign and 180 malware applications. As described at the 

beginning of the chapter we have used partial data for individual feature experimental analysis. 

We fed the collected permission combination statistics to the J.48, BaysNet, Naïve Bayes and 

Random forest classifiers in the WEKA tool and we use testing set data, consisting of 220 benign 

instances and 37 malware instances, to evaluate the classifiers. The classification results are 

shown in Table 5.2. It shows that J48 classifier achieves 89.10% accuracy rate, the Random 

forest achieves 85.60%accuracy rate, the Naïve Bayes achieves 89.50% accuracy rate and the 

BayesNet classifier achieves 89.88% accuracy rate. But as we can see from the confusion matrix 

all the classifiers classify large number of malware instances as normal instances (high false 

positive rate). This is due to lack of permission combinations which can identify malware 

behavior properly. 

To evaluate the performance of the machine learning classification models we also calculate the 

true positive ratio and true negative ratio as shown in Table 5.2. The true positive ratio is 

proportion of malware instances classified correctly which is given by the formula: 

                                                         TPR = TP/ (TP+FN) 

Where TP: number malware instances classified correctly 

FN: number of malware instances classified as benign/normal instances 
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Algorithm  Correctly classified Incorrectly 

classified 

TPR   TNR Confusion matrix 

J48 229 / 89.10% 28 / 10.9% 0.35 0.98 m        n <- - - classified as 

13       24    m=malware 

4        216   n=normal 

Randomforest 220 /85.60% 37/14.40% 0.32 0.94 m        n <- - - classified as 

12       25    m=malware 

12      208   n=normal 

Naïve Bayes 230/89.50% 27/10.50% 0.54 0.95 m        n <- - - classified as 

20       17    m=malware 

10       210   n=normal 

BayesNet 231/89.88% 26/10.12% 0.54 0.96 m        n <- - - classified as 

20       17    m=malware 

9         211   n=normal 

 

Table 5-2 Permission combination based classifier results for experiment 1 

 

The true negative ratio is proportion of benign or normal instances classified correctly which is 

given by the formula: 

                                              TNR = TN/ (TN+FP)  

Where TN: number of benign or normal instances classified correctly  

FP: number of benign or normal instances classified as malware instances 
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Experiment 2:  Minimum support value of 0.04 and minimum threshold for 

difference (minsuppdiff) of 0.12 

No  Generated permission combinations 
1 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 

android.permission.READ_PHONE_STATE, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE] 

2 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

3 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.SEND_SMS]   

4 [android.permission.INTERNET, android.permission.READ_CONTACTS, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

5 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

6 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.RECEIVE_SMS, android.permission.SEND_SMS]   

7 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

8 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_SMS]   

9 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

10 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

11 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.RECEIVE_BOOT_COMPLETED, 
android.permission.RECEIVE_SMS, android.permission.SEND_SMS]   

12 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.RECEIVE_BOOT_COMPLETED, 
android.permission.RECEIVE_SMS, android.permission.SEND_SMS]   

 

Table 5-3 Permission combinations generated using experiment 2 
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We have used the same training and testing set applications for all the experiments. The results 

obtained for experiment 2 are shown in Table 5.4. The experimental result shows that J48 

classifier achieves 91.05%accuracy rate, the Random forest achieves 91.83%accuracy rate, the 

Naïve Bayes achieves 89.88%accuracy rate and the BayesNet classifier achieves 89.88%accuracy 

rate. As we can see from the table the accuracy of the classifiers increase in significant amount 

except the BayesNet classifier. The accuracy of the classifiers increase because when we see the 

permission combinations generated in Table 5.3 above there are dangerous permissions included 

which are used by malware applications to do their dirty work. For example the 

android.permission.RECEIVE_BOOT_COMPLETED and android.permission.CALL_PHONE 

are some of the permissions which are included during this experiment and they are requested in 

higher proportion than their benign counterparts. Thus they can signify the property of malware 

applications when these permissions are included in our permission combinations. The 

performance of the machine learning classification models in terms of their True Positive Rate 

(TPR) and True Negative Rate are also shown in Table 5.4. 

Algorithm  Correctly 

classified 

Incorrectly  

classified 

TPR TNR Confusion matrix 

J48 
 

234 / 91.05% 23 / 8.95% 0.49 0.98 m        n <- - - classified as 
18       19    m=malware 
4        216   n=normal 

Randomforest 
 

236 / 91.83% 21 / 8.17% 0.57 0.98 m        n <- - - classified as 
21      16    m=malware 
 5       215   n=normal 

Naïve Bayes 
 

231 / 89.88% 26 / 10.12% 0.54 0.96 m        n <- - - classified as 
20       17    m=malware 
9         211  n=normal 

BayesNet 231 / 89.88% 26 / 10.12% 0.54 0.96 m        n <- - - classified as 
20       17    m=malware 
9         211   n=normal 

 

Table 5-4 Permission combination based classifier results for experiment 2 

 

 

 



49 
 

Experiment 3:  Minimum support value of 0.03 and minimum threshold for 
difference (minsuppdiff) of 0.10 

No  Generated permission combinations 
1 [android.permission.CALL_PHONE, android.permission.INTERNET, 

android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.SEND_SMS, 
android.permission.WRITE_EXTERNAL_STORAGE]   

2 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.RECEIVE_SMS, android.permission.SEND_SMS, 
android.permission.WRITE_SMS]   

3 [android.permission.ACCESS_COARSE_LOCATION, 
android.permission.ACCESS_FINE_LOCATION, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]   

4 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS]  

5 [android.permission.INTERNET, android.permission.READ_CONTACTS, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE, 
com.android.launcher.permission.INSTALL_SHORTCUT]   

6 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, 
android.permission.RECEIVE_BOOT_COMPLETED, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS]   

7 [android.permission.ACCESS_NETWORK_STATE, android.permission.ACCESS_WIFI_STATE, 
android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.RECEIVE_SMS, 
android.permission.SEND_SMS]   

8 [android.permission.ACCESS_COARSE_LOCATION, 
android.permission.ACCESS_FINE_LOCATION, android.permission.INTERNET, 
android.permission.READ_PHONE_STATE, 
com.android.browser.permission.READ_HISTORY_BOOKMARKS, 
com.android.browser.permission.WRITE_HISTORY_BOOKMARKS, 
com.android.launcher.permission.INSTALL_SHORTCUT]   
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9 

[android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
com.android.launcher.permission.INSTALL_SHORTCUT, 
com.android.launcher.permission.READ_SETTINGS, 
com.android.launcher.permission.UNINSTALL_SHORTCUT, 
com.htc.launcher.permission.READ_SETTINGS, 
com.motorola.launcher.permission.INSTALL_SHORTCUT]   

10 [android.permission.INTERNET, android.permission.READ_CONTACTS, 
android.permission.READ_PHONE_STATE, android.permission.SEND_SMS, 
android.permission.SET_WALLPAPER, android.permission.WRITE_EXTERNAL_STORAGE, 
com.android.launcher.permission.INSTALL_SHORTCUT]   

11 [android.permission.CALL_PHONE, android.permission.INTERNET, 
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.SEND_SMS, 
android.permission.WRITE_CONTACTS]   

12 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, 
android.permission.READ_SMS, android.permission.SEND_SMS, 
android.permission.SET_WALLPAPER, android.permission.WRITE_EXTERNAL_STORAGE, 
com.android.launcher.permission.INSTALL_SHORTCUT]   

13 [com.android.launcher.permission.INSTALL_SHORTCUT, 
com.android.launcher.permission.READ_SETTINGS, 
com.android.launcher.permission.UNINSTALL_SHORTCUT, 
com.lge.launcher.permission.INSTALL_SHORTCUT, 
com.lge.launcher.permission.READ_SETTINGS, 
com.motorola.dlauncher.permission.INSTALL_SHORTCUT, 
com.motorola.dlauncher.permission.READ_SETTINGS]   

 

Table 5-5 Permission combinations generated using experiment 3 

 

The results of the classifiers for experiment 3 are shown in Table 5.6. The experimental result 

shows that J48 classifier achieves 93.39% accuracy rate, the Random forest achieves 94.94% 

accuracy rate, the Naïve Bayes achieves 91.05% accuracy rate and the BayesNet classifier 

achieves 91.44% accuracy rate. From the table we can see that we have achieved good accuracy 

for each of the classifiers where Randomforest being the most accurate one with almost 95% 

detection accuracy. The increase in detection rate is due to the inclusion of permission 

combinations which can identify malwares more specifically. If we see experiment 1 and 

experiment 2 there is no third party permissions included but when analyzing some of the 

malware families manually we have seen that the third party permissions have their own value to 

identify malware applications. For example one of the sample    
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(SHA1:af140ab1gd04bd9e52d8c5f2ff6440f3l9ebc8qr) malware has android.permission. ACCESS 

_NETWORK_STATE, android.permission.INTERNET, android.permission.READ_PHONE_STATE and 

android.permission.WRITE_EXTERNAL_STORAGE from the default android permissions but it also 

includes excessive amount of third party permissions. Thus if we include third party permissions 

we can increase the detection rate of the classifier and the true negative and true positive rate. 

We have used the permission combinations generated in this experiment for our final evaluation 

of the proposed framework. 

Algorithm  Correctly 

classified 

Incorrectly 

Classified 

TPR TNR Confusion matrix 

J48 240 / 93.39% 

 

17/ 6.61% 0.62 0.99 m        n <- - - classified as 

23       14    m=malware 

3        217   n=normal 

Randomforest 

 

244 / 94.94% 

 

13 / 5.06% 0.73 0.99 m        n <- - - classified as 

27      10    m=malware 

3      217   n=normal 

Naïve Bayes 234 / 91.05% 

 

23 / 8.95% 0.57 0.97 m        n <- - - classified as 

21       16     m=malware 

7       213   n=normal 

BayesNet 235/ 91.44% 

 

22 / 8.56% 0.54 0.98 m        n <- - - classified as 

20       17    m=malware 

5215   n=normal 

 

Table 5-6 Permission combination based classifier results for experiment 3 

 

During analysis of the permission of benign and malicious applications we also try to see on 

individual permissions. Table 5.7 illustrates the top 10 permissions used in both datasets. As we 

can see from the table in both datasets the android.permission.INTERNET is the most common 

permission.  The android.permission.READ_PHONE_STATE which is used to collect the phone 

information such as IMEI and the phone number is used in more percent in malware dataset but 

it also have higher percentage in benign datasets too. Another permission which is used in 

malware dataset mostly is android.permission.SEND_SMS (47%) when we see its percentage in 
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benign set it is below 4%. The android.permission.READ_SMS is the next dangerous permission 

which is used in 39% of the malware application but it is used only in 4% of the benign 

applications. These two permissions are used by malware applications to send SMS messages to 

Premium numbers.  

There are also other permissions such as android.permission.RECEIVE_SMS, 

android.permission.READ_CONTACTS, android.permission.RECEIVE_BOOT_COMPLETED 

which are used mostly in malware applications. If an application requests for a single permission 

only it will not harm the system but if it request for combination of such dangerous permissions 

then there is a possibility that the application will harm the system. That is why in this thesis 

work we focus to analyze the combination of permissions which have been used by malwares 

frequently. 

Benign applications Malware applications 

android.permission.INTERNET 96% android.permission.INTERNET 91% 

android.permission.ACCESS_NETWORK_STATE 93% android.permission.READ_PHONE_STATE 67% 

android.permission.WRITE_EXTERNAL_STORAGE 70% android.permission.WRITE_EXTERNAL_STORAGE 48% 

android.permission.READ_PHONE_STATE 53% android.permission.SEND_SMS 47% 

android.permission.WAKE_LOCK 41% android.permission.ACCESS_NETWORK_STATE 46% 

android.permission.ACCESS_WIFI_STATE 40% android.permission.READ_SMS 39% 

android.permission.ACCESS_COARSE_LOCATION 31% android.permission.RECEIVE_SMS 35% 

android.permission.ACCESS_FINE_LOCATION 30% android.permission.READ_CONTACTS 34% 

android.permission.GET_ACCOUNTS 26% android.permission.RECEIVE_BOOT_COM

PLETED 

33% 

android.permission.RECEIVE_BOOT_COMPLETED 25% android.permission.ACCESS_WIFI_STATE

, android.permission.WAKE_LOCK 

26% 

 

Table 5-7 Permissions requested by both benign and malware applications and their percentage 
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5.2 Analyzing the Intent information 

 

Benign applications Malware applications 

android.intent.action.MAIN 99% android.intent.action.MAIN 95% 

android.intent.action.BOOT_COMPLETED 20% android.intent.action.BOOT_COMPLETED 40% 

android.intent.action.VIEW 24% android.intent.action.PHONE_STATE 10% 

android.intent.action.PACKAGE_ADDED 9% android.intent.action.USER_PRESENT 6% 

android.intent.action.SEARCH 8% android.intent.action.NEW_OUTGOING_CALL 5% 

android.intent.action.PACKAGE_REMOVED 7% android.intent.action.SIG_STR 4% 

android.intent.action.SEND 7% android.intent.action.VIEW 3% 

android.intent.action.PACKAGE_REPLACED 7% android.intent.action.PACKAGE_ADDED 3% 

android.intent.action.PHONE_STATE 4% android.intent.action.SET_WALLPAPER 2% 

android.intent.action.USER_PRESENT 3% android.intent.action.PACKAGE_REMOVED 2% 

 

Table 5-8 Top 10 Intents used by both benign and malware applications 

 

From Table 5.8 above we can see that some of the intents are used in higher percentage than 

their benign counterparts. The intent action android.intent.action.BOOT_COMPLETED is used 

two times more in malware applications than benign applications. The 

android.intent.action.PHONE_STATE and android.intent.action.USER_PRESENT are also used 

in higher percentage value in malware than benign applications. In this thesis work we have 

followed the same approach used for the permission feature analysis. Thus we have selected the 

most frequently used intent action combinations in malware datasets to detect malicious android 

applications. We have used the same Apriori algorithm to generate the most repeatedly used 

intent action combinations in both datasets and then we find for an interesting combination by 

using the threshold value for difference. The most commonly used intent action combinations in 

malware datasets are shown in Table 5.9. 
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No  Generated Intent action combinations 

1 android.intent.action.ACTION_POWER_CONNECTED, 

android.intent.action.BOOT_COMPLETED, android.intent.action.INPUT_METHOD_CHANGED, 

android.intent.action.UMS_CONNECTED, android.intent.action.UMS_DISCONNECTED 

2 android.intent.action.BOOT_COMPLETED, android.intent.action.DATE_CHANGED, 

android.intent.action.MAIN, android.intent.action.NEW_OUTGOING_CALL, 

android.intent.action.PHONE_STATE 

3 android.intent.action.BOOT_COMPLETED, android.intent.action.MAIN, 

android.intent.action.NEW_OUTGOING_CALL, android.intent.action.PHONE_STATE, 

android.intent.action.USER_PRESENT 

4 android.intent.action.BOOT_COMPLETED, android.intent.action.INPUT_METHOD_CHANGED, 

android.intent.action.UMS_CONNECTED, android.intent.action.UMS_DISCONNECTED, 

android.intent.action.USER_PRESENT 

5 android.intent.action.ACTION_POWER_CONNECTED, 

android.intent.action.BOOT_COMPLETED, android.intent.action.INPUT_METHOD_CHANGED, 

android.intent.action.UMS_DISCONNECTED, android.intent.action.USER_PRESENT 

6 android.intent.action.ACTION_POWER_CONNECTED, 

android.intent.action.BOOT_COMPLETED, android.intent.action.UMS_CONNECTED, 

android.intent.action.UMS_DISCONNECTED, android.intent.action.USER_PRESENT 

7  android.intent.action.BATTERY_CHANGED, android.intent.action.BOOT_COMPLETED, 

android.intent.action.MAIN, android.intent.action.PHONE_STATE, 

android.intent.action.USER_PRESENT 

 

Table 5-9 Intent action combinations generated 

 

During experimental analysis of the Intent actions we use the same threshold values used in 

experiment 3 for both minimum support value and difference threshold value. We perform the 

experimental analysis for the intent actions using the same user input values used during the 

permission combination analysis. The best detection accuracy was achieved when we use the 

threshold values used in experiment 3. By including the intent actions generated above we can 

achieve a better detection rate for the classifiers. The experimental result shows that J48 

classifier achieves 93.77% accuracy rate, the Random forest achieves 96.50% accuracy rate, the 
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Naïve Bayes achieves 91.83% accuracy rate and the BayesNet classifier achieves 91.44% 

accuracy rate. As we can see from Table 5.10 we have achieved almost 97% accuracy using the 

Randomforest classifier and we can identify most of the malware instances except seven of them. 

To identify the malware instances which cannot be detected using either their permission 

combinations or intent actions we analyze their network characteristics. 

Algorithm  Correctly 

classified 

Incorrectly 

Classified 

TPR TNR Confusion matrix 

J48 241 / 93.77% 

 

16/ 6.23% 0.68 0.98 m        n <- - - classified as 

25       12     m=malware 

4        216   n=normal 

Randomforest 248 / 96.50% 

 

9 / 3.50% 0.81 0.99 m        n <- - - classified as 

30       7    m=malware 

2      218   n=normal 

Naïve Bayes 236 / 91.83% 

 

21 / 8.17% 0.59 0.97 m        n <- - - classified as 

22       15     m=malware 

6       214 n=normal 

BayesNet 235/ 91.44% 

 

22 / 8.56% 0.54 0.98 m        n <- - - classified as 

20   17    m=malware 

5         215   n=normal 

 

Table 5-10 Classifier results using permission and intent action combinations 

 

 

5.3 Analyzing the network behavior of Apps 

The permission based malware detection method will be avoided by some malwares. For 

example if a malware application has the internet permission only then it can download 

malicious code from the internet and perform its dirty work. Thus monitoring the network 

behavior of such malwares and others will be used to identify them. 

To analyze the network behavior of the apps we monitor and collect the network features listed 

on section 4.1.1 when the application is running on the emulator for 15 up to 20 minutes. The 
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ADB Monkey tool is used to interact with the applications during the experiment. The Monkey 

tool has no actual difference compared to human interaction to activate malicious activity of an 

application. The following figure shows the network behavior of most network intensive 

applications monitored during our experimental analysis and a malware sample application. Even 

though the figures are drawn by using the average received bytes vs. average sent bytes, we can 

see that different applications have different network behavior and this is very helpful to identify 

whether a certain application is malware or benign based on its network characteristics.  

                                  

 

Figure 5-2(a) Network behavior of Facebook                          (b) Network behavior of Gmail 

 

                                   

 

  (c) Network behavior of Twitter                                            (d) Network behavior of operamini 
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(e) Network behavior of Basebridge sample malware 

To save resource on the device we want to analyze the network behavior of applications which 

use the internet. Therefore we have analyzed the network behavior of applications which request 

the android.permission.INTERNET permission in their manifest fileand we also monitor 

applications which do not request any permission at all since such applications will use zero 

permissions flaws to use the internet permission provided for other applications. To analyze the 

effectiveness of the network behavior we run 100 malware and 400 benign applications on the 

emulator and collect the network features using the API provided by the Android SDK when 

each of these applications was run. Then we train the machine learning algorithms used in this 

thesis work using the extracted network features. Then we use 60 malware and 200 benign 

applications to evaluate the machine learning algorithms that we train before. The results of the 

evaluation are shown in Table 5.11. The experimental result shows that J48 classifier achieves 

81.54% accuracy rate, the Random forest achieves 86.15% accuracy rate, the Naïve Bayes 

achieves 72.31% accuracy rate and the BayesNet classifier achieves 77.69% accuracy rate. 
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Algorithm  Correctly  

classified 

Incorrectly  

classified 

TPR TNR Confusion  

Matrix 

J48 212/ 81.54% 35/ 18.46% 0.65 0.865 m        n <- - - classified as 

3921    m=malware 

27    173   n=normal 

Randomforest 224/86.15% 36/13.85% 0.73 0.90 m        n <- - - classified as 

44     16      m=malware 

20     180    n=normal 

Naïve Bayes 188/72.31% 72/27.69% 0.52 0.79 m        n <- - - classified as 

31    29      m=malware 

43    157   n=normal 

BayesNet 202/77.69% 

 

58/22.31% 

 

0.58 0.84 m        n <- - - classified as 

35     25      m=malware 

33    167     n=normal 

 

Table 5-11 Classifier results for network behavior analysis 

 

 

5.4 Evaluation of Proposed Framework using combined feature set 

In this section we will evaluate the proposed framework using the collected feature sets which 

are analyzed individually in the previous sections. During this experimental analysis our dataset 

consists of all the features including the permission combinations, the intent information and the 

network behavior of applications. We have randomly selected 1557 benign applications and 154 

malware applications to train the classifiers and we use 669 benign and 65 malware applications 

to test the trained model classifiers. We have monitored the combined features when the 

application was running on the Android emulator. The classifier results obtained are shown in 

Table 5.12.The experimental result shows that J48 classifier achieves 94.96% accuracy rate, the 

Random forest achieves 96.73% accuracy rate, the Naïve Bayes achieves 92.37% accuracy rate 

and the BayesNet classifier achieves 94.14% accuracy rate. 
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Algorithm  Correctly  

classified 

Incorrectly  

classified 

TPR TNR Confusion  

Matrix 

J48 697/ 94.96% 37/ 5.04% 0.83 0.96 m        n <- - - classified as 

54      11   m=malware 

26      643   n=normal 

Randomforest 710/96.73% 24/3.27% 0.89 0.97 m        n <- - - classified as 

58       7      m=malware 

17      652    n=normal 

Naïve Bayes 678/92.37% 56/7.63% 0.72 0.94 m        n <- - - classified as 

47      18      m=malware 

38      631     n=normal 

BayesNet 691/94.14% 43/5.86% 0.80 0.96 m        n <- - - classified as 

52    13      m=malware 

30    639 n=normal 

 

Table 5-12 Classifier results for the combined feature set 

 

5.5 Performance overhead analysis  

The users of smartphones, especially in Android, are unwilling to use security analysis 

applications which can degrade the performance of their smartphones. It is therefore necessary 

that the security tools developed for smartphones should not lower the computational capabilities 

of the devices.  

The main goal of our thesis is to implement a lightweight security auditing tool for android 

devices. Thus our proposed solution should not impact the device such that the user is aware of 

such performance degradations. To measure the performance overhead of the solution we use the 

Task manager application and we measure the CPU, memory consumption as well as the Battery 

exhaustion period with and without running the proposed solution. We use Samsung GT-S5300, 

with OS Android Gingerbread version 2.3.6, and Linux kernel version 2.6.35.7 to perform the 

performance analysis. The service running at background and collecting the features periodically 

requires an average of 3.7-5.6% of CPU overhead and of 3-4% of RAM space. The device which 
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was used during our performance overhead analysis has a total of 289 MB of RAM space. The 

effect of our proposed solution on the battery is analyzed by comparing the battery level 

difference with and without running the periodic service using the battery monitor of Android 

settings. The analysis result shows that only 2% of battery level degradation with measurement 

interval of 20 minutes. During our battery level measurement the discharge rate of the battery 

was bad that is why it discharges faster.  
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Chapter 6 

Conclusions and Recommendations 

Today smartphones are becoming more popular and cheaper and there are different smartphone 

manufacturers and users of smartphones have increased so greatly. At the same time, attacks for 

smartphones become increasingly dangerous since they contain personal information including 

digital images, personal address book and personal documents and performing telephony 

services such as sending SMS messages to premium rate numbers have economic benefit for 

attackers. Recently, Android is the most popular smartphone operating system, which is free, 

open source, and based on embedded Linux. Android platform provides a lot of easily used 

programming interfaces. Currently, how to detect malware and prevent Android devices from 

being attacked becomes an area of research. Traditional malware detection methods proposed 

based on PC architecture is not very applicable to lower computing capability and power-limited 

smartphones. Thus a lightweight malware detection mechanism suitable for smartphones is 

desirable. 

In this thesis we design and implement a lightweight security auditing tool for android devices. 

The framework is developed using the APIs provided by the android SDK. It collects features 

from the Android system which are accessible at the application level and can best describe the 

behavior of the system and newly installed applications and uses machine learning algorithms for 

detection of malicious activities. 

Our experimental results indicate that our developed framework has better accuracy and low rate 

of false positive and false negative using the features collected at the application level: 

permission combinations used by the application, intent actions used by applications for their 

activation and the network behavior of the applications. From the experiments we realize that 

Android permission combination analysis, network traffic monitoring and the intent information 

analysis can provide effective method to determine the behavior of malicious activities on 

android applications. 

Compared to Andromaly [1], our thesis work uses a smaller number of features, and has been 

tested on real malware, and extract additional features which best describe the android malware 
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and design new method of monitoring in some features which are also used in [1], and shows 

better performance in terms of detection. After the learning phase, the false positive rate of our 

thesis work is 0.01, whereas that of [1] is 0.12. The detection rate of our thesis work is 96% only 

using permission feature, while that of [1] is 86%. 

As a future work, adding more features which can increase the detection accuracy of our 

framework and analyzing the applications which are not correctly classified to minimize the 

number of false positives and false negatives. When we monitor features we have to take into 

account that as we monitor more features we are consuming high amount of resources from the 

device. 
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Appendix  

Code segmentof the extractor unitused to retrieve features using APIs provided by the Android 
SDK. 

/***************************** 

Code segment to get the number of running processes  

*************************/ 

ActivityManager am = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE); 
 List<RunningAppProcessInfo>   processes  = am.getRunningAppProcesses()); 
 
for (RunningAppProcessInfo process_running : processes) { 
 
if (((appProcess.importance == RunningAppProcessInfo.IMPORTANCE_FOREGROUND) || 
(appProcess.importance == RunningAppProcessInfo.IMPORTANCE_VISIBLE))) {   
for (String package_name : appProcess.pkgList) { 
PackageManager pm; 
 
/* ***************************************************** 
Code segment used in the extractor unit that is used to extract the total number of 
permissions requested by the running application  
******************************************/ 
 
PackageInfo Info = pm.getPackageInfo( package_name, PackageManager.GET_ACTIVITIES); 
 
 if ((Info.applicationInfo.flags ApplicationInfo.FLAG_SYSTEM) != 0) { 
   // system processes are not monitored 
    continue; 
   }  
else { 
PackageInfo info = pm.getPackageInfo(package_name, PackageManager.GET_PERMISSIONS); 
 
     
 int permissions += info.requestedPermissions.length; 
    
 
 
/*********************************************************** 
Part of the Source code for the extractor unit that is used to check whether the 
running application contain any dangerous permission combination 
***************************************/ 
 
 
BufferedReader permission_combination = new BufferedReader(new InputStreamReader( 
    getAssets().open("permission.txt")));  
    
if (info.requestedPermissions != null) { 
 
while (permission_combination.ready()) { 
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 String line = permission_combination.readLine(); 
 
 String [] linearray = line.split(","); 
 for (String y : linearray) { 
 List<String[]>  arlist= new ArrayList<String[]> () .add(y); 
    } 
     List<String[]>  perm_comb_array = new ArrayList<String[]> ().add(arlist); 
                          } 
 
 
for (int n = 0; n < perm_comb_array.size(); n++) { 
perm_comb_array.get(n); 
 
for (int i = 0; i < perm_comb_array.get(n).length; i++) { 
for (int m = 0; m < info.requestedPermissions.length; m++) { 
 
if (perm_comb_array.get(n)[i].equals(info.requestedPermissions[m])) { 
  boolean perm_comb_found =true;  
        } 
       } 
      } 
                                       } 
} 
 
 
/********************************************** 
Part of the source code for the extractor unit that is used to extract intent 
information of the running application. 
************************/ 
BufferedReader intent_Info = new BufferedReader(new InputStreamReader( 
    getAssets().open("Intent.txt")));  
    
 
while (intent_Info.ready()) { 
 
 String line2 = intent_Info.readLine(); 
 
   String [] linearray2 = line.split(","); 
  
 
 
 
for (String y : linearray2) { 
 List<String[]>  arlist2= new ArrayList<String[]> () .add(y); 
 
    } 
     List<String[]>  intent_array = new ArrayList<String[]> ().add(arlist2); 
                          } 
 
 for (int n = 0; n < intent_array.size(); n++) { 
 
   intent_array.get(n); 
 
    for (int i = 0; i < intent_array.get(n).length; i++) { 
  Intent _intent = new Intent(intent_array.get(n)[i]); 



71 
 

       
     List<ResolveInfo> resolveInfo = pm.queryBroadcastReceivers(_intent, 0); 
 
 int numberOfapps = resolveInfo.size() - 1; 
 
  if (numberOfapps < 1) { 
// the application running does not contain such dangerous intent actions 
    continue; 
       } 
         else{ 
   for (int k = 0; k <= numberOfapps; k++) { 
 ResolveInfo info = resolveInfo.get(k); 
     ActivityInfo activityinfo = info.activityInfo; 
 
 if (activityinfo.packageName.equals(package_name)) { 
 
   boolean intent_comb_found = true;  
 
        } 
                                                 } 
 
  } 
 } 
 } 
 
/******************************************************* 
Code segment that is used to extract the network behavior of the running 
applications. 
********************************/ 
 
int uid = Info.applicationInfo.uid; 
long transmitted_packets = TrafficStats.getUidTxPackets(uid); 
long transmitted_Bytes = TrafficStats.getUidTxBytes(uid); 
long recieved_Packets = TrafficStats.getUidRxPackets(uid); 
long recieved_Bytes = TrafficStats.getUidRxBytes(uid); 
     
     
long increment_of_transmitted_Packets = transmitted_packets - 
previous_tansmitted_Packets; 
long increment_of_transmitted_Bytes = transmitted_Bytes - previous_tansmitted_Bytes; 
long increment_of_recieved_Packets = recieved_Packets - previous_recieved_Packets; 
long increment_of_recieved_Bytes =  recieved_Bytes - previous_recieved_Bytes; 
     
     
 transmitted_packets = transmitted_packets; 
    previous_tansmitted_Bytes = transmitted_Bytes; 
 previous_recieved_Packets = recieved_Packets; 
    previous_recieved_Bytes = recieved_Bytes; 
 
         } 
} 
} 
       } 
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/*********************************** 
Code segment used to collect the features extracted by using the extractor unit 
periodically and write them in ARFF file format on external sd-card of the device. 
********************************/ 
ScheduledExecutorService _scheduledExecutor = Executors.newScheduledThreadPool(1); 
ScheduledExecutorService = _scheduledExecutor2 = Executors.newScheduledThreadPool(1); 
 _scheduledExecutor.scheduleAtFixedRate(new Runnable() { 
  private int attempt = 1; 
 
  public void run() { 
 
            /********************** 
               Method used to collect the features using the above code segments 
             ******************/      
                    collectfeature(); 
 
    /********************** 
               Code segment used to write the data extracted and returned by the 
                  Collectfeature() method to external sdcard 
 
             ******************/ 
 
 
File sdCard = Environment.getExternalStorageDirectory(); 
File magDir = new File(sdCard.getAbsolutePath() + "/LWSAT/"); 
         magDir.mkdirs(); 
 
FileOutputStream fos; 
         String filename = malware.arff; 
         String data = collectfeature(); 
 try { 
  File file = new File(magDir, fileName); 
  fos = new FileOutputStream(file); 
  fos.write( data.getBytes() ); 
  fos.close(); 
 } catch (FileNotFoundException e) { 
  e.printStackTrace(); 
 } catch (IOException e) { 
  e.printStackTrace(); 
 } 
     
   } 
 
   
 }, 1, 5, TimeUnit.SECONDS); 
 
 _scheduledExecutor2.schedule(new Runnable() { 
  public void run() { 
 
             /******************************** 
              Code segment used to classify the collected feature vectors 
                 and alert the user 
              ****************/               
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 InputStream ins = getAssets().open("RandomForest.model"); 
    ObjectInputStream oins = new ObjectInputStream(ins); 
    rfc = ois.readObject(); 
    ois.close(); 
   BufferedReader data = new BufferedReader(new FileReader(  
                                                 magDir +   "/malware.arff")); 
  Aninstances newdata = new Aninstances(data); 
   
  data.close(); 
  data.setClassIndex(test.numAttributes() - 1); 
   
   
  double  predicted = rfc.classifyInstance(newdata.lastInstance()); 
  String value = newdata.classAttribute().value((int) predicted); 
   if (perdicted.equals("positive")) { 
 
    handler.post(new Runnable() { 
 
     @Override 
     public void run() { 
      // TODO Auto-generated method stub 
            Toast t = Toast.makeText(context, "malware has been detected", 5000); 
      t.setGravity(Gravity.CENTER, 0, 0); 
      t.show(); 
     } 
    }); 
 
   } else { 
    handler.post(new Runnable() { 
 
      
     public void run() { 
       
   Toast t = Toast.makeText(context, "The application you  
                                                  are running is safe", 5000); 
      t.setGravity(Gravity.CENTER, 0, 0); 
      t.show(); 
     } 
    }); 
   } 
 
  } 
 }, 1200, TimeUnit.SECONDS); 

 

 

 

Shell script code used to automate the feature extraction process from the Android emulator  

/********************************************* 
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Shell script code used to creat, start and stop the emulator and to install the feature extractor 

application 

*************************/ 

#!/bin/bash 

function emulator_creater { 

android.bat create avd -n emulator-5554 \ 

        -t 1  --abi armeabi \ 

        --force 

mksdcard -l e 512M C:\users\admin\desktop\sdcard.img 

} 

function Start_emulator { 

    emulator-arm -port 5554-avd emulator-5554\ 

         -sdcard C:\users\admin\desktop\sdcard.img\ 

        -noaudio -wipe-data   -no-boot-anim \ 

        -no-snapshot -http-proxy 0.0.0.0:0 & 

adb -s emulator-5554 wait-for-device 

adb -s emulator-5554 install   /Audittool/bin/FETUL.apk 

} 

 

function Stop_emulator { 

 /cygdrive/c/Windows/system32/taskkill.exe /F /IM emulator-arm.exe 

    android.bat delete avd -n emulator-5554 

} 

function monitor_benign { 

    ls Training/N*apk | while read APK; do 

Start_emulator 
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        monkeytool $APK 

    done 

} 

 

function monitor_malicious{ 

    ls Training/M*apk | while read APK; do 

Start_emulator 

        monkeytool $APK 

    done 

} 

emulator_creater 

monitor_benign 

monitor_malicious 

     data_collector 

Stop_emulator 

exit 0 

########################################## 

Shell script code used to start the monkeytool and to start and stop the extractor application and collect 

the data from the application 

####################################### 

#!/bin/bash 

function monkeytool { 

adb -s emulator-5554 install $1 

    start_audittool $1 

    pkg=`aapt dump badging $1 |  

        grep -o "package: name='[^']*'" | cut -f2 -d \'` 
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adb -s emulator-5554shell monkey -p $pkg  --pct-syskeys 0 --pct-anyevent 0  -s `date +%s`  10000  

    stop_auditool $1     

  adb -s emulator-5554  shell pm disable $pkg 

     adb -s emulator-5554 uninstall $pkg 

    adb -s emulator-5554shell pm enable fetulhak.abd 

} 

function start_audittool { 

adb -s emulator-5554shell am start -a android.intent.action.MAIN \ 

        -n fetulhak.abd/.MainActivity 

    if [[ $1 == Training/M* ]]; then 

        Lable=positive 

  else 

        Lable=negative 

    fi 

adb -s emulator-5554 shell "echo $Lable> /mnt/sdcard/LWSAT/classvalue" 

} 

function stop_audittool { 

adb -s emulator-5554pull /mnt/sdcard/LWSAT/malware.arff  /Training/$1.arff 

   adb -s emulator-5554 shell pm disable fetulhak.abd 

} 

function data_collector{ 

    sed '1,/@data/!d' `find . -name '*.arff' | head -1` >instance.txt 

    for feature in $(find . -name '*.arff'); do 

        sed '1,/@data/d' $feature > instance2.txt  

        sed '1d' instance2.txt >> instance.txt  
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          done 

    mv tmpTotal.txt /dataset.arff 

} 

######################################### 

Script code used to develop model classifier and evaluate it using the WEKA tool 

######################################### 

#!/bin/sh 

   Ref1=`cygpath -wp /cygdrive/c/users/admin/desktop/WekaMod.jar` 

   Ref2="java -Xmx1g -cp $Ref1" 

function develop_Model { 

 

    $Ref2 weka.classifiers.bayes.BayesNet -t /data.arff -d BayesNet.model \ 

 "-D -Q weka.classifiers.bayes.net.search.local.K2 -- -P 1 -S BAYES 

        -E weka.classifiers.bayes.net.estimate.SimpleEstimator 

        -- -A 0.5"  

    $Ref2 weka.classifiers.trees.RandomForest -t /data.arff -d RandomForest.model "-I 10 -K 0 -S 1" 

    $Ref2 weka.classifiers.bayes.NaiveBayes -t /data.arff -d NaiveBayes.model 

    $Ref2 weka.classifiers.trees.J48 -t /data.arff -d J48.model "-C 0.25 -M 2" 

} 

function evaluate_Model { 

#Cross validation 

time $Ref2 weka.classifiers.bayes.BayesNet  -t data.arff   &> evaluate_BayesNet.txt  

time $Ref2 weka.classifiers.bayes.NaiveBayes  -t data.arff   &> evaluate_NaiveBayes.txt  

time $Ref2 weka.classifiers.trees.J48  -t data.arff   &> evaluate_J48.txt  

time $Ref2 weka.classifiers.trees.RandomForest  -t data.arff   &> evaluate_RandomForest.txt 
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#evaluation on testing set data 

 time $Ref2 weka.classifiers.bayes.BayesNet  -l /BayesNet.model \ 

        -T data2.arff &> testevaluation_BayesNet.txt 

time $Ref2 weka.classifiers.bayes.NaiveBayes -l /NaiveBayes.model \ 

        -T data2.arff &> testevaluation_NaiveBayes.txt 

time $Ref2 weka.classifiers.trees.J48 -l /J48.model \ 

        -T data2.arff &> testevaluation_J48.txt 

time $Ref2 weka.classifiers.trees.RandomForest -l /RandomForest.model \ 

        -T data2.arff &> testevaluation_RandomForest.txt 

} 

 


